3.372 \(\int \frac{A+B x^2}{x^{3/2} (a+b x^2)} \, dx\)

Optimal. Leaf size=235 \[ -\frac{(A b-a B) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{5/4} b^{3/4}}-\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} a^{5/4} b^{3/4}}-\frac{2 A}{a \sqrt{x}} \]

[Out]

(-2*A)/(a*Sqrt[x]) + ((A*b - a*B)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(5/4)*b^(3/4)) - (
(A*b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(5/4)*b^(3/4)) - ((A*b - a*B)*Log[Sqrt[a
] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(5/4)*b^(3/4)) + ((A*b - a*B)*Log[Sqrt[a] + Sqr
t[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(5/4)*b^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.180586, antiderivative size = 235, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {453, 329, 297, 1162, 617, 204, 1165, 628} \[ -\frac{(A b-a B) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{5/4} b^{3/4}}-\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} a^{5/4} b^{3/4}}-\frac{2 A}{a \sqrt{x}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x^(3/2)*(a + b*x^2)),x]

[Out]

(-2*A)/(a*Sqrt[x]) + ((A*b - a*B)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(5/4)*b^(3/4)) - (
(A*b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(5/4)*b^(3/4)) - ((A*b - a*B)*Log[Sqrt[a
] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(5/4)*b^(3/4)) + ((A*b - a*B)*Log[Sqrt[a] + Sqr
t[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(5/4)*b^(3/4))

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{x^{3/2} \left (a+b x^2\right )} \, dx &=-\frac{2 A}{a \sqrt{x}}-\frac{\left (2 \left (\frac{A b}{2}-\frac{a B}{2}\right )\right ) \int \frac{\sqrt{x}}{a+b x^2} \, dx}{a}\\ &=-\frac{2 A}{a \sqrt{x}}-\frac{\left (4 \left (\frac{A b}{2}-\frac{a B}{2}\right )\right ) \operatorname{Subst}\left (\int \frac{x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{a}\\ &=-\frac{2 A}{a \sqrt{x}}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{a \sqrt{b}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{a \sqrt{b}}\\ &=-\frac{2 A}{a \sqrt{x}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 a b}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 a b}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}\\ &=-\frac{2 A}{a \sqrt{x}}-\frac{(A b-a B) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{5/4} b^{3/4}}\\ &=-\frac{2 A}{a \sqrt{x}}+\frac{(A b-a B) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{5/4} b^{3/4}}-\frac{(A b-a B) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{5/4} b^{3/4}}-\frac{(A b-a B) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}+\frac{(A b-a B) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{5/4} b^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.0855865, size = 74, normalized size = 0.31 \[ \frac{\frac{(a B-A b) \left (\tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{-a}}\right )+\tanh ^{-1}\left (\frac{a \sqrt [4]{b} \sqrt{x}}{(-a)^{5/4}}\right )\right )}{\sqrt [4]{-a} b^{3/4}}-\frac{2 A}{\sqrt{x}}}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x^(3/2)*(a + b*x^2)),x]

[Out]

((-2*A)/Sqrt[x] + ((-(A*b) + a*B)*(ArcTan[(b^(1/4)*Sqrt[x])/(-a)^(1/4)] + ArcTanh[(a*b^(1/4)*Sqrt[x])/(-a)^(5/
4)]))/((-a)^(1/4)*b^(3/4)))/a

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 277, normalized size = 1.2 \begin{align*} -{\frac{\sqrt{2}A}{2\,a}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-{\frac{\sqrt{2}A}{2\,a}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-{\frac{\sqrt{2}A}{4\,a}\ln \left ({ \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{\sqrt{2}B}{2\,b}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{\sqrt{2}B}{2\,b}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{\sqrt{2}B}{4\,b}\ln \left ({ \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-2\,{\frac{A}{a\sqrt{x}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x^(3/2)/(b*x^2+a),x)

[Out]

-1/2/a/(1/b*a)^(1/4)*2^(1/2)*A*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)+1)-1/2/a/(1/b*a)^(1/4)*2^(1/2)*A*arctan(2^
(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)-1/4/a/(1/b*a)^(1/4)*2^(1/2)*A*ln((x-(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)
)/(x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)))+1/2/b/(1/b*a)^(1/4)*2^(1/2)*B*arctan(2^(1/2)/(1/b*a)^(1/4)*
x^(1/2)+1)+1/2/b/(1/b*a)^(1/4)*2^(1/2)*B*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)+1/4/b/(1/b*a)^(1/4)*2^(1/2)*B
*ln((x-(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2))/(x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)))-2*A/a/x^(
1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.913593, size = 1735, normalized size = 7.38 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

1/2*(4*a*x*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4)*arctan((
sqrt((B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 +
 A^6*b^6)*x - (B^4*a^7*b - 4*A*B^3*a^6*b^2 + 6*A^2*B^2*a^5*b^3 - 4*A^3*B*a^4*b^4 + A^4*a^3*b^5)*sqrt(-(B^4*a^4
 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3)))*a*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6
*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4) + (B^3*a^4*b - 3*A*B^2*a^3*b^2 + 3*A^2*B*a^2*b^3
- A^3*a*b^4)*sqrt(x)*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4
))/(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)) - a*x*(-(B^4*a^4 - 4*A*B^3*a^3*b +
 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4)*log(a^4*b^2*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*
B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(3/4) - (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*
sqrt(x)) + a*x*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(1/4)*log(
-a^4*b^2*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^5*b^3))^(3/4) - (B^3*a^3
 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqrt(x)) - 4*A*sqrt(x))/(a*x)

________________________________________________________________________________________

Sympy [A]  time = 18.2556, size = 374, normalized size = 1.59 \begin{align*} \begin{cases} \tilde{\infty } \left (- \frac{2 A}{5 x^{\frac{5}{2}}} - \frac{2 B}{\sqrt{x}}\right ) & \text{for}\: a = 0 \wedge b = 0 \\\frac{- \frac{2 A}{\sqrt{x}} + \frac{2 B x^{\frac{3}{2}}}{3}}{a} & \text{for}\: b = 0 \\\frac{- \frac{2 A}{5 x^{\frac{5}{2}}} - \frac{2 B}{\sqrt{x}}}{b} & \text{for}\: a = 0 \\- \frac{2 A}{a \sqrt{x}} + \frac{\left (-1\right )^{\frac{3}{4}} A b^{16} \left (\frac{1}{b}\right )^{\frac{63}{4}} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 a^{\frac{5}{4}}} - \frac{\left (-1\right )^{\frac{3}{4}} A b^{16} \left (\frac{1}{b}\right )^{\frac{63}{4}} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 a^{\frac{5}{4}}} - \frac{\left (-1\right )^{\frac{3}{4}} A b^{11} \left (\frac{1}{b}\right )^{\frac{43}{4}} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{a^{\frac{5}{4}}} - \frac{\left (-1\right )^{\frac{3}{4}} B b^{15} \left (\frac{1}{b}\right )^{\frac{63}{4}} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 \sqrt [4]{a}} + \frac{\left (-1\right )^{\frac{3}{4}} B b^{15} \left (\frac{1}{b}\right )^{\frac{63}{4}} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 \sqrt [4]{a}} + \frac{\left (-1\right )^{\frac{3}{4}} B b^{10} \left (\frac{1}{b}\right )^{\frac{43}{4}} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{\sqrt [4]{a}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x**(3/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo*(-2*A/(5*x**(5/2)) - 2*B/sqrt(x)), Eq(a, 0) & Eq(b, 0)), ((-2*A/sqrt(x) + 2*B*x**(3/2)/3)/a, Eq
(b, 0)), ((-2*A/(5*x**(5/2)) - 2*B/sqrt(x))/b, Eq(a, 0)), (-2*A/(a*sqrt(x)) + (-1)**(3/4)*A*b**16*(1/b)**(63/4
)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(5/4)) - (-1)**(3/4)*A*b**16*(1/b)**(63/4)*log((-1)*
*(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(5/4)) - (-1)**(3/4)*A*b**11*(1/b)**(43/4)*atan((-1)**(3/4)*sqrt
(x)/(a**(1/4)*(1/b)**(1/4)))/a**(5/4) - (-1)**(3/4)*B*b**15*(1/b)**(63/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/
4) + sqrt(x))/(2*a**(1/4)) + (-1)**(3/4)*B*b**15*(1/b)**(63/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x)
)/(2*a**(1/4)) + (-1)**(3/4)*B*b**10*(1/b)**(43/4)*atan((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/a**(1/4),
 True))

________________________________________________________________________________________

Giac [A]  time = 1.16346, size = 339, normalized size = 1.44 \begin{align*} -\frac{2 \, A}{a \sqrt{x}} + \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{3}{4}} B a - \left (a b^{3}\right )^{\frac{3}{4}} A b\right )} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a^{2} b^{3}} + \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{3}{4}} B a - \left (a b^{3}\right )^{\frac{3}{4}} A b\right )} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a^{2} b^{3}} - \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{3}{4}} B a - \left (a b^{3}\right )^{\frac{3}{4}} A b\right )} \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a^{2} b^{3}} + \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{3}{4}} B a - \left (a b^{3}\right )^{\frac{3}{4}} A b\right )} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a^{2} b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x^(3/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-2*A/(a*sqrt(x)) + 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4)
 + 2*sqrt(x))/(a/b)^(1/4))/(a^2*b^3) + 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arctan(-1/2*sqrt(2)
*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^2*b^3) - 1/4*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b
)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^3) + 1/4*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*
A*b)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^3)